
Generative Adversarial Network with Soft-Dynamic Time Warping and Parallel
Reconstruction for Energy Time Series Anomaly Detection

Hardik Prabhu 1, Jayaraman Valadi 2, Pandarasamy Arjunan 3

1, 3Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bengaluru, India
2School of Computing and Data Sciences, FLAME University, Pune, India
hardik.prabhu@gmail.com, jayaraman.vk@flame.edu.in, samy@iisc.ac.in

Abstract

In this paper, we employ a 1D deep convolutional generative
adversarial network (DCGAN) for sequential anomaly detec-
tion in energy time series data. Anomaly detection involves
gradient descent to reconstruct energy sub-sequences, iden-
tifying the noise vector that closely generates them through
the generator network. Soft-DTW is used as a differentiable
alternative for the reconstruction loss and is found to be su-
perior to Euclidean distance. Combining reconstruction loss
and the latent space’s prior probability distribution serves as
the anomaly score. Our novel method accelerates detection by
parallel computation of reconstruction of multiple points and
shows promise in identifying anomalous energy consump-
tion in buildings, as evidenced by performing experiments on
hourly energy time series from 15 buildings.

Introduction
Buildings consume significant energy, accounting for ap-
proximately 40% of total energy usage worldwide. The re-
cent proliferation of smart metering systems has led to an
unprecedented volume of energy time-series data. Through
data-driven analysis, valuable insights about the buildings’
energy use patterns have been obtained, offering informa-
tive perspectives on energy usage. However, it is crucial to
acknowledge the influence of anomalies on energy manage-
ment. In commercial buildings, the presence of inadequately
maintained, faulty, or deteriorated hardware, along with im-
proper operational practices, is estimated to contribute to
the wastage of 15 to 30 % of energy consumption (Kati-
pamula and Brambley 2005; Schein et al. 2006). Further-
more, if anomalous energy use instances are not accurately
identified and properly corrected, it can distort the reference
points used for making predictions, leading to inaccurate and
unreliable future forecasts as well. Hence, energy anomaly
detection is essential for efficient energy management. The
existing methods in this field primarily focus on identify-
ing power samples that show significant deviations from the
normal consumption patterns, either being excessively high
or low. However, this approach may not effectively capture
the sequential anomalies that could indicate more complex
issues in energy usage (Himeur et al. 2021).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In recent years, generative models have gained a lot of at-
tention due to their remarkable ability to learn and mimic
complex data distributions, leading to advancements in di-
verse fields such as image synthesis, natural language pro-
cessing, and time series analysis. Generative models such
as Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) can effectively learn the patterns, trends, and de-
pendencies present in normal data and then generate syn-
thetic data points that closely resemble the original data.
GANs are good at synthesis, particularly time series, and
are widely used for anomaly detection (Di Mattia et al. 2019)
despite the challenges faced in the training of GANs, such as
vanishing gradients, non-convergence, and diminishing gra-
dients (Brophy et al. 2021). Their superiority in effectively
identifying intricate features in time series data, aids in the
detection of complex anomalies. This makes them stand out
in comparison with the previously used anomaly detection
models (Zhu et al. 2019).

Unlike the statistical likelihood-based anomaly detection
models such as those used in (Coluccia, D’Alconzo, and
Ricciato 2013), GANs do not rely on identifying the like-
lihood of a data point coming from the dense region of the
data distribution. Instead, GANs effectively learns a map-
ping between a simple prior, typically the standard Gaus-
sian distribution in a latent space to the data distribution.
The mapping of the data distribution to the normal distri-
bution is then followed by the reconstruction of data points
from the normal distribution. If the GAN is unable to gen-
erate (reconstruct) a particular sample accurately, it can be
logically concluded that the sample is an anomaly (Li et al.
2019; Bashar and Nayak 2020; Geiger et al. 2020). In our
work, we invert the generator network (inverse mapping) of
the GAN for reconstruction by applying gradient descent in
the latent space (Schlegl et al. 2017), and subsequently per-
form anomaly detection.

The main contributions of this paper are:

• Efficient utilization of Generative Adversarial Networks
(GANs) for anomaly detection in univariate energy time
series, derived from meter readings from a dataset of real
buildings.

• Proposing Soft-DTW (Cuturi and Blondel 2017) as an
alternative to Euclidean distance as a differentiable re-
construction loss.

• Parallel computation of reconstruction of multiple data
points simultaneously, effectively mitigating the perfor-
mance bottleneck.

• Adapting a method for effectively evaluating sequence-
level anomaly detection with GANs for dataset annotated
with pointwise anomaly labels.

Background and Motivation
It has been reported that more than 20% of the total en-
ergy consumed within buildings is wasted due to various
factors (Roth et al. 2005). Therefore, it is important to iden-
tify these energy wastage events to reduce buildings’ oper-
ational costs. Various existing research has centred on data-
driven anomaly detection methods that utilize smart meter-
ing data (Himeur et al. 2021). Despite these advancements,
robust anomaly detection in real buildings remains a chal-
lenging task due to the complex nature of anomalies caused
by various deviations in the operational patterns of the build-
ings. While there is increasing interest among them, their
primary focus is on detecting instantaneous energy wastage
(point anomaly). Whereas, the studies are limited in scope
in detecting continuous energy wastage events (sequence
anomaly) which is a challenging task (Himeur et al. 2021).

In recent years, GANs have gained increasing prominence
in detecting complex anomalies across various domains.
Their capability to capture complex patterns and dependen-
cies in normal data enables them to generate synthetic data
points that closely resemble the original data, making them
effective tools for anomaly detection. While various vari-
ants of GANs are available, in this paper, we employ a vari-
ant known as the 1-dimensional Deep Convolutional Gen-
erative Adversarial Network (1D-DCGAN) (Radford, Metz,
and Chintala 2015) for detecting anomalies in building en-
ergy time series data.

Generative Adversarial Networks (GANs)
A GAN consists of two networks, a generator (G) and a
discriminator (D) which train in an adversarial setting. The
main idea behind GANs is to have the generator network
learn to generate data that resembles samples from a target
data distribution, without explicitly modelling the distribu-
tion itself. The generator takes in random noise as input and
tries to produce synthetic data samples that mimic the real
data. The discriminator is trained to distinguish between real
data samples from the actual dataset and fake data samples
produced by the generator. The value function V (G,D) for
the min-max game played between the generator and the dis-
criminator is given below.

min
G

max
D

V (G,D) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1− logD(G(z))]
(1)

With a prior distribution p(z) in the noise space, the gen-
erator implicitly defines a distribution pg for the generated
output G(z). The discriminator assigns a probability score
D(x) to input x for belonging to the target distribution pdata.
In the original GAN (Goodfellow et al. 2014), several the-
oretical guarantees are derived which are important to our

ongoing discussion. For a fixed G, the optimal discriminator
(D∗) is given as D∗ = maxD V (G,D). The optimal dis-
criminator could be then written in terms of the generator
distribution (pg) and the data distribution (pdata).

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(2)

By substituting the optimal discriminator D∗ in V , which is
implicitly a function of G, the equilibrium of the min-max
game is obtained by minimizing C(G) = V (G,D∗). The
simplified expression is given below.

C(G) = − log(4) + 2 · JSD(pdata∥pg) (3)

The Jensen–Shannon divergence (JSD) is non-negative
and only reaches its minimum when pg = pdata. Minimiz-
ing the JSD between the data distribution and the generator’s
output is desirable for data generation. However, this ap-
proach might be overly cautious, leading to mode collapse,
where the generator produces limited and repetitive samples
without exploring the full diversity of the data distribution.
To prevent false positives during anomaly detection, it be-
comes essential to learn how to generate from the entire dis-
tribution of normal data. Mode collapse and other stability
issues have led to the evolution of alternative loss functions.

GAN Training with Wasserstein Loss
W-GAN (Arjovsky, Chintala, and Bottou 2017) suggests an
alternative training process to provide a more stable and re-
liable training process for GANs. Wasserstein distance mea-
sures the distance between two probability distributions. It
effectively tackles issues like the vanishing gradient and
mode collapse, making it a favourable choice for enhancing
the training and performance of GAN models. The theoreti-
cal formulation of the distance between pg and pdata is given
below.

W (pdata, pg) = inf
γ∈Γ(pg,pdata)

E(x,y)∼γ [∥x− y∥] (4)

Where γ is the joint distribution over (x, y) such that the
marginal distributions of x and y are pg and pdata. A more
tractable version of the loss is given by the Kantorovich-
Rubinstein duality.

W (pdata, pg) = sup
D∈Lip(K)

(
Ex∼pdata [D(x)]− Ey∼pg [D(y)]

)
(5)

A function (discriminator) D is K-Lipschitz if for all x
and y in the domain of D, the following condition holds:

|D(x)−D(y)| ≤ K · ∥x− y∥ (6)
Therefore, the generator and discriminator are required to

optimize the following min-max function.

V (G,D) = min
G

max
D∈Lip(K)

(
Ex∼pdata [D(x)]− Ey∼pg

[D(y)]
)

(7)
It is important to note that the discriminator is no longer

limited to being a classifier; it can be any function as long as
it adheres to the Lipschitz constraint. To maintain this con-
straint during training, gradient clipping is applied (See (Ar-
jovsky, Chintala, and Bottou 2017)). Additionally, the loss

function of the discriminator could be used to evaluate con-
vergence. The absolute value of the discriminator loss in
WGAN serves as an approximation of the Wasserstein dis-
tance between pdata and pg .

Anomaly Detection Using GAN Inversion
The GAN in our study is trained solely on normal data,
which means its generator is designed to produce only re-
alistic samples. If the generator is unable to replicate a cer-
tain sample, it can be inferred that the sample is an anomaly.
GANs, being likelihood-free models that generate realistic
samples, require a mechanism to invert this generation pro-
cess. This inversion maps the data back to the correspond-
ing noise in the latent space, which is then passed through
the generator. Comparing this output with the original data
point helps in anomaly detection.

While TadGAN (Geiger et al. 2020) uses training an en-
coder along with the generator for inverse mapping, we have
elected to implement a different strategy. Our approach fo-
cuses on gradient descent in the latent space, which involves
separate processes for generation and reconstruction. This
distinction enables us to use any differentiable loss, pro-
viding us with more flexibility in how we reconstruct data.
Moreover, this way the success of our reconstruction process
is largely dependent on the quality of the generator and the
choice of the differentiable reconstruction error.

Drawing inspiration from AnoGAN (Schlegl et al. 2017),
which uses a Deep Convolutional GAN (DCGAN) trained
on normal image datasets, we also use DCGAN, in a one-
dimensional version suited for time series data. To address
the stability challenges in GANs highlighted by (Arjovsky,
Chintala, and Bottou 2017), we implement W-GAN for
training our model.

Bashar et al. (Bashar and Nayak 2020) performed inverse
mapping for time-series anomaly detection using gradient
descent in latent space. However, they have encountered the
same limitations as AnoGAN, it requires performing exten-
sive optimization steps for reconstruction of each data point,
which results in poor test-time performance (Di Mattia et al.
2019). We address this challenge by utilizing parallel com-
putation to simultaneously reconstruct multiple points. The
details are present in the methodology section.

Methodology
Given an univariate time series {xt} = {x1, x2, . . . xT },
where xi ∈ R is a meter reading at time step i. The ob-
jective is to devise a methodology to find a subset A ⊂ {xt}
such that it contains the points that deviate from the normal
energy usage pattern. We define the following terms:

1. Time segment: A subset of consecutive points from a
time series. For example S = {x4, x5, x6, . . . x103}.

2. Time sub-sequence: It is a smaller segment of the time
series consisting of a fixed length, given by the variable
window size.

The LEAD Dataset and Pre-processing
The LEAD1.0 dataset (Gulati and Arjunan 2022) is used
in this study. This public dataset includes hourly-based

z (100,1)

1D
 C

on
vT

(256,w/23)

1D
 C

on
vT

(128,w/22)

1D ConvT

(64,w/2)

x (1,w)

R
el

u

R
el

u

R
el

u

Ta
nh

Generator

1D Conv

1D
 C

on
v

1D
 C

on
v

(64,w/2)
(128,w/22)

(256,w/23)

x (1,w)
D(x) (1,1)

Discriminator

Le
ak

yR
el

u

Le
ak

yR
el

u

Le
ak

yR
el

u

Le
ak

yR
el

u

Figure 1: 1D DCGAN architecture for anomaly detection.

electricity meter readings for commercial buildings over
up to one year. Each building contains about 8,784 data
points. Anomaly annotations are provided, marking individ-
ual anomalous points within each building’s time series. In
this study, we selected 15 buildings with adequate normal
data to assess the performance of the proposed framework.

Train-test Segments First, the time series data for indi-
vidual buildings’ electricity consumption is partitioned into
segments. Subsequently, a fixed-size rolling window is ap-
plied to each segment, creating time sub-sequences that
serve as input to the model. For each of the annual meter
reading time series in our dataset, we first remove miss-
ing readings. Then we divide each series into 25 contigu-
ous, non-overlapping time segments. The segments contain
point-wise anomaly annotations. The segments which have
no anomalous points are used in training. The rest of the seg-
ments are used for testing. Each segment is normalized to be
in the range [-1,1]. This step is crucial because our genera-
tor model utilizes a tanh activation function at its end, which
outputs within this specific range.

Model Input A segment of time series data is further pro-
cessed using a rolling window of fixed length to generate the
model inputs. Let S = {x1, x2, . . . xn+w−1} be a segment
of time series. Then, using window size w, a collection of n
time sub-sequences X is generated as shown below.

X = {(x1, . . . xw), (x2, . . . xw+1), . . . (xn, . . . xn+w−1)}
(8)

The sub-sequences are overlapping in nature. The sub-
sequences undergo further processing to form the model in-
put, resulting in a tensor with the shape (Batch size, features
(1), window size (w)).

1-D DCGAN Architecture
Both the generator and discriminator have 3 symmetrical
hidden layers as shown in Figure 1. The generator uses a

Algorithm 1: Inverse Mapping with Gradient De-
scent

Requires: Query sub-sequence X , Generator G,
Latent space prior pz , Learning rate α,
Reconstruction loss L

Result: Reconstructed sub-sequence X ′

1 Initialize random latent vectors Z ∼ pz ; while
stopping criteria not met do

2 Generate synthetic data samples using the
generator: Xr = G(Z);

3 Calculate the reconstruction error:
Loss = L(X,Xr);

4 Calculate the gradient of the loss w.r.t. Z:
∇ZL = ∂Loss

∂Z ;
5 Update the latent vector using gradient descent:

Z = Z − α · ∇ZL;
6 Reconstruct data sub-sequence using the updated

latent vector: X ′ = G(Z);

series of convolutional transpose layers to upsample the in-
put noise vector into a 1D time series output. starting with a
1D transposed convolutional layer with 100 input channels
(noise dimensions) and 256 output channels, followed by
ReLU activation, and three more transposed convolutional
layers with decreasing output channels (128, 64, and 1), fol-
lowed by Tanh activation at the end. The discriminator con-
sists of 4 1D convolutional layers, each followed by Leaky
ReLU activation. In a DCGAN, batch normalization is com-
monly used in intermediate layers to stabilize training and
improve convergence. However, it is typically not used in
the generator’s output layer and in the discriminator’s in-
put layer and output layer. The latent space is made up of
100 dimensions and we take the prior distribution pz as an
independent standard Multivariate Gaussian over the latent
space.

Inverse Mapping
The goal of inverse mapping is to estimate the input that gen-
erated a particular output. In the context of deep learning, it
is the reversing of the forward mapping that a neural net-
work might have learned. Inverse mapping is an active area
of research in representation learning, generative modelling,
explainability and adversarial robustness. Key technical ap-
proaches include encoder-decoder architectures, conditional
generation, and inverting using gradient descent in the input
space.

In this work, we focus on the gradient descent approach in
the latent (input) space. The idea is straightforward. To in-
vert the query data X . It requires starting from noise in latent
space Z ∼ pz and updating it using gradient descent by eval-
uating a differentiable (reconstruction) loss L(X,G(Z)).
After few iterations, Z is considered as G−1(X). The de-
tails are described in Algorithm 1.

Reconstruction Loss When evaluating the error (dissim-
ilarity) between two time series sub-sequences, Dynamic
Time Warping (DTW) (Berndt and Clifford 1994) is of-

ten used as a loss function rather than mean squared er-
ror (MSE). DTW allows for flexible alignment between the
original and reconstructed time sub-sequence, overcoming
small shifts and distortions. MSE assumes a fixed one-to-
one alignment and penalizes any mismatch equally, even if
just slightly misaligned. DTW compares the overall shapes
of the time sub-sequences, rather than exact value matching.
This is more appropriate for generative modelling where we
need to capture the essence of temporal patterns and dynam-
ics, not necessarily reproduce the original numerical values.
We use Soft-DTW (Cuturi and Blondel 2017) as a differen-
tiable alternative to DTW for reconstruction loss, enabling
gradient descent-based optimization.

Given two sequences X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., ym), the Soft-DTW distance can be defined us-
ing the following recurrence relation:

D[i, j] =softminγ (D[i− 1, j], D[i, j − 1], D[i− 1, j − 1])

+ d(xi, yj)
(9)

where d(xi, yj) is a distance metric between the elements
xi and yj , and softminγ is the soft minimum operator (Cuturi
and Blondel 2017). The Soft-DTW distance between the two
sequences X and Y is found at D[n,m].

Parallel Computation The way the neural networks are
designed, the generator G can perform parallel computations
to construct k number of data points in data space from k
noise vectors. These could further compared with k query
points X = [X1, X2, ...Xk] to get a loss vector.

L(G(Z),X) =


L(G(Z1), X1)
L(G(Z2), X2)
L(G(Z3), X3)

...
L(G(Zk), Xk)

 (10)

If the final loss in the backward computation is the mean
(or the sum) of all the losses, then since the weights of the
network are not being updated, all the points could be up-
dated simultaneously.

Z = Z − α∇Z
1

k

k∑
i=1

(L(G(Zi), Xi)) (11)

Hence, the reconstruction operations can be executed in
parallel for multiple data points. When combined with GPU
acceleration, our experiments demonstrate a significant re-
duction in computation time. Refer to Figure 3 for an illus-
tration.

Anomaly Score
After training the GANs, any input sub-sequence X with
the shape (1, 1, w) can be inverted as Z and reconstructed
as G(Z) of the same shape using Algorithm 1. Multiple
sub-sequences could be reconstructed in parallel. The re-
construction loss is measured using Soft-DTW, which also
provides a direct way of obtaining an anomaly score. Our
objective goes beyond identifying if there is an appropriate

input to generate a sample resembling X . We also want to
ensure that this input can be generated by sampling from the
latent space distribution pz which is Gaussian-centred at the
origin. The combined anomaly score is presented below.

Anomaly score(X) = α ∗Soft-DTW(X,G(Z))+β ∗ ∥Z∥2
(12)

Where α and β regulate the influence of each subpart. The
input sub-sequence is marked as anomalous if the anomaly
score exceeds a certain threshold.

Anomaly Detection Using Kernel Density Estimates
Due to the sequential nature of anomalies, a direct compar-
ison between the ground truth and the prediction becomes
difficult. In this regard, we use a similar method proposed in
the prior work done by Gu et al. (Gu and Jazizadeh 2022).
The set of time windows (sub-sequences) identified as an
anomaly by the model are to be first converted into anoma-
lous timestamps to make a comparison with the ground
truth. This is achieved by performing the following steps.

1. Select a test segment for evaluation.
2. Create overlapping sub-sequences of window size w.
3. Produce anomaly scores for each of the sub-sequences.
4. For sub-sequences with anomaly scores greater than a set

threshold, mark the timestamp corresponding to the mid-
dle of each sub-sequence as the critical points.

5. Use Kernel Density Estimation (KDE) (Parzen 1962) to
create a distribution over the test segment of the critical
points. Scale the density to lie between 0 and 1.

6. Find points of the scaled KDE above a certain height and
mark those timestamps as the predicted anomalies.

Refer to Figure 2 for an illustration of anomaly detection
over a test segment.

Model Evaluation
Although the labels are pointwise, time series anomalies can
span a range of time, making it challenging to precisely de-
fine the onset of an anomaly. Thus, as long as the model
predicts in the vicinity of the anomaly label, it should not be
penalized. Introducing some tolerance (rt) in performance
calculations accounts for this consideration. To evaluate the
model, we adopt precision, recall and F1 score. True Pos-
itives (TP), False Negatives (FN), and False Positives (FP)
calculations are adjusted with the introduction of tolerance.

TP : |d− pclosest| ≤ rt,

FN : |d− pclosest| > rt,

FP : |p− dclosest| > rt

(13)

Where d represents the location of a labelled ground truth
anomaly, and pclosest denotes the nearest anomaly prediction.
Ground truth anomalies with a predicted anomaly in their
proximity are considered TP, while those without any pre-
dicted anomaly nearby are classified as FN. FP refers to an
anomaly prediction that does not correspond to any real de-
fect in its vicinity, with p representing the location of the
predicted anomaly and dclosest representing the nearest actual
annotated anomaly location.

Experiments and Results
The implementation of 1D-DCGAN is done using PyTorch,
a popular deep-learning library in Python. In our experimen-
tal setup, we use the Adam optimizer for training both net-
works, with the beta set to 0.5 and a learning rate of 0.0002.
The WGAN’s ”ncritic” parameter is configured to 5, and the
clipping value is set at 0.01. Additionally, a batch size of 128
is used. Our analysis focuses on sub-sequences with a win-
dow size of 48 and a latent space of 100 dimensions. The
Gan model is trained for 200 epochs. The evaluation hyper-
parameters for anomaly scores are adjusted while observing
the model performance on the test set.

We evaluate our methodology on each energy time series
separately. The time series for each building is divided into
train-test segments. The sub-sequences are created using a
window size of 48 hours. The training segments are distinct
from the test segments. For the evaluation, we set the hy-
perparameters separately for each building: 1. α, 2. β, 3.
anomaly score ’threshold’, and 4. KDE ’min height’. Fig-
ure 2 demonstrates the anomaly detection process over a
test time segment. The x-axis shows timestamps in hours
indexed from zero. The y-axis contains the scaled meter
readings (orange line). After tuning the evaluation hyper-
parameters for a building, a test segment for that building is
evaluated. The critical points are first calculated (mid-point
of the anomalous subsequences), which are marked as blue
dots. Then a kernel density (KDE) is fitted over the critical
points (line in blue). The points which have a scaled KDE
value above the min height (dotted red horizontal line) are
marked as anomalous (green dots).The red crosses indicate
the actual annotated anomalies. Since the actual anomalies
are annotated by human inspection, and it is difficult to pin-
point the exact onset of a sequential anomaly, it is impor-
tant that our model marks the regions where the sequential
anomaly took place rather than marking the exact annotated
anomaly points. Therefore, some tolerance is incorporated
when calculating the F1 score. Table 1 compares the perfor-
mance metrics of the anomaly detection model for different
tolerance (rt) values.

Reconstruction done in parallel significantly decreases the
testing time. Figure 3 demonstrates the time (measured in
seconds) required to reconstruct data across different batch
sizes on the same machine. When reconstructing one data
point at a time (sequential reconstruction), the time taken
displays a linear relationship with the batch size. In contrast,
when reconstruction is performed in parallel, the time taken
remains relatively constant across different batch sizes.

We conduct a comparative analysis of the average per-
formance across all buildings using different reconstruction
losses. Commonly, Euclidean distance is employed. How-
ever, our study confirms the effectiveness of Soft-DTW as a
suitable alternative differentiable reconstruction loss. Since
we are reconstructing multiple data points in parallel in a
batch, our model operates in two modes: Active Statistics
Mode (ASM) and Static Statistics Mode (SSM). In the ASM
mode, the generator model’s BatchNorm layers utilize the
mean and variance of the current batch while performing
reconstruction. In contrast, in the SSM mode, they rely on
the estimated population statistics gathered during training.

Figure 2: A test time series segment from a building with timestamps indexed starting from 0 along the x-axis. The orange line represents
the scaled actual meter reading, and the blue line represents the scaled KDE. Actual annotated anomalies are indicated by red crosses, while
our method marks anomalies with green dots, considering only KDE values above a threshold.

Figure 3: Comparison between time taken for reconstruction
done using Mean Square Error loss sequentially and in par-
allel for different batch sizes.

Table 1: Performance metrics on different buildings

Building No. rt = 12 rt = 24
Rec. Prec. F1 Rec. Prec. F1

1 0.983 0.988 0.986 0.988 0.994 0.991
2 0.629 0.991 0.769 0.697 0.992 0.819
3 0.768 0.663 0.712 0.898 0.792 0.842
4 0.668 0.725 0.695 0.747 0.827 0.785
5 0.936 0.876 0.905 0.936 0.978 0.956
6 0.618 0.870 0.723 0.751 0.903 0.820
7 0.882 0.918 0.900 1.000 1.000 1.000
8 0.674 0.796 0.730 0.838 0.856 0.847
9 0.791 0.772 0.781 0.917 0.890 0.903
10 0.692 0.759 0.724 0.835 0.792 0.813
11 0.570 0.833 0.677 0.640 0.936 0.760
12 0.627 0.941 0.753 0.637 1.000 0.778
13 0.841 0.891 0.865 0.869 0.959 0.912
14 0.945 0.937 0.941 0.945 1.000 0.972
15 0.817 0.810 0.813 0.846 0.815 0.830
Ave 0.763 0.851 0.798 0.836 0.915 0.869

This distinction can significantly impact the model’s perfor-
mance. We test the model using both reconstruction losses,
and the results are detailed in Table 2. Notably, Soft-DTW

Table 2: Average Performance Metrics for different choices
of reconstruction loss

Reconstruction rt = 12 rt = 24
Rec. Prec. F1 Rec. Prec. F1

Soft-DTW (ASM mode) 0.763 0.851 0.798 0.836 0.915 0.869
Soft-DTW (SSM mode) 0.785 0.832 0.777 0.843 0.879 0.834
Euclidean (SSM mode) 0.773 0.789 0.751 0.851 0.853 0.824
Euclidean (ASM mode) 0.516 0.520 0.476 0.603 0.582 0.548

proves to be the more effective method in both scenarios,
achieving F1 scores of 0.869 and 0.834. This performance is
notably better than that of the Euclidean loss, which achieves
F1 scores of 0.824 and 0.548. Interestingly, turning off the
evaluation mode enhances the results specifically when us-
ing Soft-DTW.

In this study, we also benchmark our model against an
autoencoder. Specifically, we employ a 1-D Convolutional
Neural Network (CNN) Autoencoder, which is designed
with an encoder that mirrors the generator component of
our Generative Adversarial Network (GAN), and a decoder
that serves as its symmetrical counterpart. Additionally, we
evaluate the performance of the Local Outlier Factor (LOF)
model. All the models are evaluated on each of the build-
ings separately and then the average performance metrics are
calculated and presented in Table 3. Our GAN-based model
outperforms all others, particularly when employing Soft-
DTW as the loss function, achieving an F1 score of 0.869
with a 24-hour tolerance. The 1D-CNN autoencoder ranks
as the second-best model, securing an F1 score of 0.829,
closely followed by the GAN model with Euclidean recon-
struction, which scores 0.824 in F1. In contrast, the non-deep
learning-based method, Local Outlier Factor (LOF), shows a
significantly lower performance, with an F1 score of 0.414,
indicating its ineffectiveness in detecting sequential anoma-
lies.

The source code and additional materials related to this
study are available in the GitHub repository. 1

Conclusion
The paper systematically demonstrates how to train the
GAN on normal data, perform gradient-based inverse map-

1https://github.com/HardikPrabhu/Energy-Time-series-
anomaly-detection

Table 3: Average performance metrics across 15 buildings

Model rt = 24 (Tolerance)

Precision Recall F1

GAN (Soft-DTW)* 0.915 0.836 0.869
GAN (Euclidean) 0.853 0.851 0.824

1-D CNN-Autoencoder 0.887 0.840 0.829
LOF 0.305 0.815 0.414

*Best performing model with Soft-DTW reconstruction

ping to reconstruct query samples, and use the reconstruc-
tion error as an anomaly score to generate critical points on
a given time series segment and create an anomaly distri-
bution on the segment using KDE. Tolerance is introduced
for comparison with models that detect anomalies at the sub-
sequence or pointwise level. This makes the evaluation more
flexible.

By incorporating parallel computation, we effectively
mitigate the performance bottleneck, a commonly cited
drawback of this approach. This enhancement opens av-
enues for more studies on various components in an iso-
lated context. For example, refining the generative process
through improved model architecture, optimizing the choice
of reconstruction loss, and enhancing the anomaly scor-
ing mechanism. Additionally, there is potential for explor-
ing different approaches to benchmark sequential anomalies,
which in most of the datasets, are annotated solely by times-
tamps (pointwise).

One limitation of our method, which involves using over-
lapping sub-sequences to identify critical points for a time
segment, is the possibility of lower Kernel Density Estima-
tion (KDE) values for the beginning and end parts. This re-
duction is attributed to the overlapping method used in de-
riving sub-sequences, leading to a lesser relative frequency
of critical points in these specific areas. To address this is-
sue, we could add a window length’s worth of data at both
the start and end of a test segment, borrowing from the pre-
ceding and subsequent segments, respectively.

While the results showcased in this study are preliminary,
they underscore the potential and promise of the approach.
However, it is crucial to recognize the need for more rigor-
ous benchmarking. This entails comprehensive comparisons
across a broader range of buildings and an extensive variety
of models. Such thorough evaluations, which extend beyond
the scope of our current work, will provide deeper insights
and reinforce the findings presented in our paper. The lim-
itations identified will be addressed in an expanded version
of this paper.

References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International conference
on machine learning, 214–223. PMLR.

Bashar, M. A.; and Nayak, R. 2020. TAnoGAN: Time se-
ries anomaly detection with generative adversarial networks.

In 2020 IEEE Symposium Series on Computational Intelli-
gence (SSCI), 1778–1785. IEEE.

Berndt, D. J.; and Clifford, J. 1994. Using dynamic time
warping to find patterns in time series. In Proceedings of the
3rd international conference on knowledge discovery and
data mining, 359–370.

Brophy, E.; Wang, Z.; She, Q.; and Ward, T. 2021. Gener-
ative adversarial networks in time series: A survey and tax-
onomy. arXiv preprint arXiv:2107.11098.

Coluccia, A.; D’Alconzo, A.; and Ricciato, F. 2013.
Distribution-based anomaly detection via generalized like-
lihood ratio test: A general maximum entropy approach.
Computer Networks, 57(17): 3446–3462.

Cuturi, M.; and Blondel, M. 2017. Soft-dtw: a differentiable
loss function for time-series. In International conference on
machine learning, 894–903. PMLR.

Di Mattia, F.; Galeone, P.; De Simoni, M.; and Ghelfi, E.
2019. A survey on gans for anomaly detection. arXiv
preprint arXiv:1906.11632.

Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.;
and Veeramachaneni, K. 2020. Tadgan: Time series anomaly
detection using generative adversarial networks. In 2020
IEEE International Conference on Big Data (Big Data), 33–
43. IEEE.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.

Gu, Y.; and Jazizadeh, F. 2022. DEGAN: Time Series
Anomaly Detection using Generative Adversarial Network
Discriminators and Density Estimation. arXiv preprint
arXiv:2210.02449.

Gulati, M.; and Arjunan, P. 2022. LEAD1. 0: a large-scale
annotated dataset for energy anomaly detection in commer-
cial buildings. In Proceedings of the Thirteenth ACM Inter-
national Conference on Future Energy Systems, 485–488.

Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; and
Amira, A. 2021. Artificial intelligence based anomaly detec-
tion of energy consumption in buildings: A review, current
trends and new perspectives. Applied Energy, 287: 116601.

Katipamula, S.; and Brambley, M. R. 2005. Methods for
fault detection, diagnostics, and prognostics for building
systems—a review, part I. Hvac&R Research, 11(1): 3–25.

Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; and Ng, S.-K.
2019. MAD-GAN: Multivariate anomaly detection for time
series data with generative adversarial networks. In Inter-
national conference on artificial neural networks, 703–716.
Springer.

Parzen, E. 1962. On estimation of a probability density func-
tion and mode. The annals of mathematical statistics, 33(3):
1065–1076.

Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.

Roth, K. W.; Westphalen, D.; Feng, M. Y.; Llana, P.; and
Quartararo, L. 2005. Energy impact of commercial build-
ing controls and performance diagnostics: market character-
ization, energy impact of building faults and energy savings
potential. Prepared by TAIX LLC for the US Department of
Energy. November. 412pp (Table 2–1).
Schein, J.; Bushby, S. T.; Castro, N. S.; and House, J. M.
2006. A rule-based fault detection method for air handling
units. Energy and buildings, 38(12): 1485–1492.
Schlegl, T.; Seeböck, P.; Waldstein, S. M.; Schmidt-Erfurth,
U.; and Langs, G. 2017. Unsupervised anomaly detection
with generative adversarial networks to guide marker dis-
covery. In International conference on information process-
ing in medical imaging, 146–157. Springer.
Zhu, G.; Zhao, H.; Liu, H.; and Sun, H. 2019. A novel
LSTM-GAN algorithm for time series anomaly detection.
In 2019 prognostics and system health management confer-
ence (PHM-Qingdao), 1–6. IEEE.

